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1 Introduction

This project is part of the HiDALGO2[1] initiative, which ”aims to explore
synergies between modeling, data acquisition, simulation, data analysis and
visualisation along with achieving better scalability on current and future
HPC and AI infrastructures to deliver highly-scalable solutions that can ef-
fectively utilise pre-exascale systems.”[2]

Specifically focusing on the Urban Building Model[3] Use Case (UBM)
which is ”developping the Urban Building pilot application to improve build-
ing energy efficiency and indoor air quality”[3], this project aims to integrate
vegetation, particularly trees, into 3D models of urban environments.

The project was conducted within Cemosis[4] (Center for Modeling and
Simulation in Strasbourg), which is hosted by IRMA[5] (Institute for Ad-
vanced Mathematical Research) at Strasbourg University. We operated
as students under the supervision of Pierre Alliez[6], senior researcher and
team leader at Inria[7] (National Institute for Research in Digital Science
and Technology) Sophia Antipolis, and Vincent Chabannes[8], a research
engineer at IRMA.

1.1 Context

Urban areas are complex ecosystems influenced by various factors, with veg-
etation, especially trees, playing a crucial role in shaping microclimates, re-
ducing energy consumption, and enhancing overall livability[9].
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Figure 1: Tree providing shade to a building [10]

Figure 2: Thermal image of a street depicting
heat distribution [11]

This project aims to integrate trees into 3D geometric models of urban
environments to improve the accuracy and realism of thermal and energy
simulations.

By leveraging data from OpenStreetMap[12], a collaborative free geo-
graphic database, we will use CGAL[13], an open source software library of
computational geometry algorithms, to generate 3D tree models and inte-
grate them into terrain meshes.

Our primary focus will be on Strasbourg, France. More specifically, we
were provided with an .stl[14] file containing a 3D model of the Strasbourg
city center:

Figure 3: Strasbourg 3D model (1) Figure 4: Strasbourg 3D model (2)

However, the software is designed to be easily adaptable to any area.
Here’s an example of a 3D model of Manhattan, NYC:
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Figure 5: Manhattan 3D model (1) Figure 6: Manhattan 3D model (2)

1.2 Main objectives

• Extracting tree data from OpenStreetMap.

• Generating 3D tree models using CGAL.

• Integrating tree models into the terrain mesh we already have.

• Optimizing computational efficiency.

• Delivering versions V0, V1, and V2 by specified deadlines.

1.3 Software and libraries

To source our data, we’ll utilize the Overpass API[15] a read-only API to
query data from OpenStreetMap, alongside cURL[16], a URL transfer library.
For geometric modeling, we will utilize the master CGAL library, available on
GitHub[17], known for its efficiency and reliability in geometric computation.

1.4 GitHub repository

We created a GitHub repository to manage the project and facilitate col-
laboration. The repository contains the project’s code, documentation, and
resources. It will be updated regularly to reflect the progress and changes
made during the project’s development.
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1.5 Roadmap

We created a roadmap on GitHub Projects to ensure we meet the deadlines
for the deliverables. The deadlines are as follows:

• V0 - 26 March

• V1 - 23 April

• V2 - 28 May

Here is a brief overview of the main issues:
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We have adopted the Agile methodology to enhance flexibility and re-
sponsiveness throughout the project.
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2 Methodology

2.1 Data acquisition

We will use the Overpass API and cURL to query OpenStreetMap for all the
available tree data within the specified bounding box:

1 curl_easy_setopt(curl , CURLOPT_URL ,

2 "http :// overpass -api.de/api/interpreter");

3

4 // Set the Overpass query with the bounding box

5 std:: string query =

6 "[out:json]; (node(" + bbox + ")[\" natural \"=\" tree \"];);

out;";

7

8 std::cout << "Query: " << query << std::endl;

The http://overpass-api.de/api/interpreter endpoint interprets and
executes the Overpass QL[18] queries, retrieving specific parts of the OpenStreetMap
data. In this case, the query fetches all nodes within the given bounding box
tagged as natural=tree.

A config.json file is available for the user to specify the area of interest
and other parameters:

1 {
2 "bbox": "48.5750,7.7394,48.5919,7.7621",

3 "origin": "48.583055227464364, 7.748664426560083",

4 "altitude": 0,

5 "LOD": 3,

6 "default_height_range": "3, 6",

7 "default_genus": "Platanus",

8 "input_building_mesh": "mesh_lod1.stl",

9 "merge_buildings_trees": true,

10 "output_name": "grande_ile"

11 }

Where :

• bbox: is the bounding box for the query in the format:
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(SW latitude, SW longitude, NE latitude, NE longitude)

• origin: is the origin of the 3D space in latitude and longitude used to
convert the GPS coordinates to Cartesian coordinates. It must be the
same for the terrain mesh and the tree meshes.

• altitude: is the z coordinate of the tree base.

• LOD: is the level of details of the meshes (0, 1, 2 or 3)

• default height range: is a range used to randomly assign a height
to trees that do not have one.

• default genus: is the genus assigned to trees that lack a predefined
genus.

• input building mesh: is the name of the input file representing the
terrain mesh.

• merge buildings trees: is a boolean indicating whether the buildings
and trees should be merged into a single mesh or not.

• output name: is the base name of the output file representing the
unions of the tree meshes.

The data will be stored in a .json file.
Here is an example of the query result for one tree:

1 {
2 "type": "node",

3 "id": 10162018740,

4 "lat": 48.5850910,

5 "lon": 7.7502624,

6 "tags": {
7 "circumference": "1.47655",

8 "diameter_crown": "5",

9 "genus": "Platanus",

10 "height": "6",

11 "leaf_cycle": "deciduous",

12 "leaf_type": "broadleaved",

13 "natural": "tree",

14 "ref": "16401",

15 "source": "data.strasbourg.eu - patrimoine_arbore",
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16 "source:date": "2022-01-02",

17 "species": "Platanus acerifolia x",

18 "species:wikidata": "Q24853030"

19 }
20 }

Sometimes, multiple tags are missing, as shown here:

1 {
2 "type": "node",

3 "id": 4439566691,

4 "lat": 48.5839128,

5 "lon": 7.7487125,

6 "tags": {
7 "natural": "tree"

8 }
9 }

We will primarily use the position of the tree (latitude and longitude),
its height, and the genus (since this data is more abundant than the species)
to generate the 3D tree models.

2.2 Tree library

We created a library of 13 tree models in .stl format sourced from the
publicly accessible SketchUp[19] 3D Warehouse.

Here is an example of a Ginkgo model that we acquired from SketchUp:

10



Figure 7: Mesh of a Ginkgo tree on Sketchup 3D Warehouse
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Below, some of these models visualized using MeshLab[20]:

Figure 8: Abies Figure 9: Acer Figure 10: Aesculus Figure 11: Catalpa

Figure 12: Cedrus Figure 13: Liquidanbar Figure 14: Platanus Figure 15: Quercus
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To ensure the program can handle trees not included in our library, we
categorized an additional 28 genera by matching them to the most similar
models among the 13 trees we have.

1 {
2 "known_genus": ["Abies",

3 "Acer",

4 "Aesculus",

5 ... ],

6 "cedrus_like": [ "Chaemacyparis",

7 "Cupressus",

8 ... ],

9 "acer_like": ["Fadus",

10 "Metasequoia",

11 "Sequoiadendron",

12 ... ],

13 "liquidambar_like": ["Liriodendron",

14 "Pyrus",

15 "Alnus",

16 ... ],

17 "quercus_like": ["Corylus",

18 "Carya",

19 "Fagus",

20 ... ]

21 }

• known genus is a list of the genus for which we have a mesh model.

• cedrus like is a list of the genus for which the cedrus mesh model will
be used.

• etc.

2.3 Dataset

The primary dataset we are working with is a 3D model of the Strasbourg
city center, provided in the .stl file format. This file contains the geometric
information of the terrain and buildings in the specified area, which serves
as the base for our project.
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The .stl (stereolithography) format is widely used for 3D printing and
computer-aided design (CAD). It represents the surface geometry of a 3D
object without any color, texture, or other attributes. The file comprises a
collection of triangular facets, each defined by its vertices and normal vector.

Here are some key details about the .stl file we are working with:

• File Name: mesh lod1.stl

• Region Covered: Strasbourg city center

• File Size: 42,7 MB

• Number of Vertices: Approximately 120,959

• Number of Facets: Approximately 273,178

The 3D model includes various urban features such as buildings, streets,
and other infrastructure. This detailed representation is crucial for accurately
integrating tree models and conducting subsequent thermal and energy sim-
ulations.

Below are visual representations of the 3D model from different angles:

Figure 16: Strasbourg 3D model (1) Figure 17: Strasbourg 3D model (2)

This dataset is instrumental in allowing us to accurately position tree
models within the urban landscape, ensuring that our simulations reflect
realistic interactions between vegetation and urban structures.
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2.4 Alpha Wrapping

Figure 18: Different LOD of the Alpha Wrapping of a bike

2.4.1 Approach

To enclose a 3D model within a volume, various methods balance runtime
and approximation quality. Simple methods, like bounding boxes, have large
errors. Convex hulls improve quality but remain crude, especially for complex
models. Alpha shapes, a special case of the Delaunay triangulation, offer
piecewise-linear approximations but struggle with complex input data.

Inspired by alpha shapes, it uses shrink-wrapping, constructing a 3D De-
launay triangulation and iteratively removing eligible boundary tetrahedra.
This process refines the triangulation, avoiding inner structures and unnec-
essary computations. This method supports flexible input formats (triangle
soups, polygon soups, point clouds) and allows trading tightness for mesh
complexity.

2.4.2 Algorithm Initialization

The algorithm starts by inserting the vertices of a bounding box into a 3D
Delaunay triangulation. In CGAL’s 3D Delaunay triangulation, boundary
facets are adjacent to infinite cells tagged as outside, while finite tetrahedra
are tagged inside.
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2.4.3 Shrink-wrapping

The algorithm traverses from outside to inside cells, using a priority queue of
Delaunay triangle facets (gates). A gate is alpha-traversable if its circumra-
dius exceeds a user-defined alpha. The priority queue, initialized with convex
hull gates, is sorted by decreasing circumradius. Traversal uses dual Voronoi
edges.

When moving from an outside cell co to an inside cell ci through an
alpha-traversable facet f :

1. Check for intersections between f ’s dual Voronoi edge and the offset
surface. Insert the first intersection point as a Steiner point into the
triangulation.

2. If no intersection but ci intersects the input, project ci’s circumcenter
onto the offset surface and insert it as a Steiner point.

Newly alpha-traversable gates are added to the queue. If neither criterion
is met, ci is tagged outside, and its gates are pushed to the queue. The process
terminates when the queue empties, producing a triangle surface mesh from
the Delaunay triangulation.

The figure below depicts the steps of the algorithm in 2D:
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Figure 19: Steps of the shrink-wrapping algorithm in 2D. The algorithm initializes by inserting the
bounding box corners into a Delaunay triangulation, tagging finite triangles inside. The current gate
(green edge) is alpha-traversable. Adjacent triangles are tagged outside if they do not intersect the input.
If they do, new Steiner points are inserted, and traversal resumes. The output edges (dark blue) separate
inside from outside triangles.

2.4.4 Termination and Guarantees

The algorithm guarantees termination and produces a 2-manifold triangu-
lated surface mesh that encloses the input data. By wrapping from outside
to inside and refining the triangulation as needed, it ensures no intersect-
ing cells are flagged inside. Steiner points inserted during refinement break
necessary cells, reducing circumradii and ensuring completion.
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2.5 Tree model generation

Using the CGAL 3D Alpha Wrapping algorithm, we will generate reference
tree meshes for each level of detail (LOD) from 0 to 3. This pre-processing
ensures that the meshes are readily available in memory, eliminating the need
to wrap each tree model individually during program execution.

A wrap.cpp file will be provided to generate the reference meshes. It can
be used as follows:

1 ./build/wrap tree_ref/raw_tree/Ginkgo.stl 50 600

Where 50 is the alpha value and 600 is the offset value.

Additionally, to wrap all the trees in a directory, the wrap all.sh script
can be used:

1 #!/bin/bash

2

3 # Directory containing the raw STL files

4 INPUT_DIR="tree_ref/raw_tree"

5

6 # The alpha value to use for wrapping

7 ALPHA =100

8

9 # Loop through all STL files in the input directory

10 for input_file in $INPUT_DIR /*. stl; do

11 ./ build/wrap "$input_file" "$ALPHA"
12 done

The reference meshes will be used to generate the tree models obtained
from the Overpass query. Each tree model will be generated by scaling and
translating the reference mesh to match the tree’s height and position in 3D
space. This will be accomplished using the CGAL Affine Transformation[21],
which has linear complexity in the number of vertices of the mesh.
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The alpha parameter for the CGAL wrapper was set as follows for each
LOD:

• LOD 0: 0.1

• LOD 1: 20

• LOD 2: 50

• LOD 3: 100

Here’s a table showing the number of faces per tree type and LOD:

Tree LOD 0 LOD 1 LOD 2 LOD 3
Abies 334 920 5648 35592
Acer 326 1516 10622 33606
Aesculus 274 1068 6084 28782
Catalpa 404 946 4508 19940
Cedrus 248 974 6702 27564
Ginkgo 332 1128 7488 38258
Gleditsia 228 1032 7506 28866
Liquidambar 212 858 5210 25146
Magnolia 230 892 7820 41150
Platanus 286 1150 7148 30670
Quercus 274 1008 8748 40426
Taxus 370 798 3644 15826
Tilia 328 1102 8104 46112

Table 1: Number of faces per tree type and LOD

The offset parameter for the CGAL wrapper was set as 600 for each
LOD.

Here are the results for a Ginkgo tree model at each LOD:
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Figure 20: Ginkgo lod0 Figure 21: Ginkgo lod1

Figure 22: Ginkgo lod2 Figure 23: Ginkgo lod3

The scenario where insufficient data is available for a tree must also be
addressed. Initially, we considered using a k-nearest neighbors algorithm[22]
to determine the tree’s metadata (species, height, leaf density, etc.) based
on surrounding trees. However, this approach is impractical because data
is often missing for large areas, such as parks. Instead, we will assign a
random height selected from a normal distribution with a mean specified
by default height range and a genus specified by default genus in the
config.json file.

2.6 Mercator projection

Generated tree models will be integrated into terrain meshes to create com-
prehensive 3D urban models. To ensure precise integration into the terrain
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mesh (especially for large area), the tree models coordinates (latitude, lon-
gitude) will be converted to Cartesian coordinates (x, y) using a Mercator
projection[23].

Figure 24: Mercator’s projection[24]

This is the most common way to represent the Earth’s surface on a plane
and has the advantage of being conformal, meaning that it preserves angles
locally (hence its usage in sailings).
In a Mercator projection, parallels and meridians are represented by straight
orthogonal lines, with the equator being the horizontal line placed at the
center of the map. The other parallels must necessarily be stretched (east-
west stretching). This stretching is accompanied by a corresponding north-
south stretching, so that the north-south scale is equal to the east-west scale
everywhere.
Mathematically, the Mercator projection is defined as follows: if a point on
the sphere has a latitude ϕ and longitude λ (with λ0 placed at the center of
the map), then its projection on the Mercator map will have coordinates{

x = λ− λ0

y = ln(tan(π
4
+ ϕ

2
))

(1)

To achieve this while taking into account that the Earth is not perfect
sphere we will assume the Earth is a geodesic defined as WGS84[25] and use
the WGS84toCartesian[26] open source header-only library to convert the
coordinates.
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Then the union of all the tree meshed will need to be computed to create
a single mesh and avoid collision between the trees.
This will be achieved using the corefine and compute[27] function from
the CGAL library. Another approach could be to use the convex hull of the
tree meshes, using the intersection of the convex hulls to compute the union
of the tree meshes.

2.7 Metrics

The complexity of the algorithms is a key metric to consider.
On each execution of the program, basics metrics will be exported to a text
file in the output directory.
These results will be analyzed more thoroughly in the section 4.

Example of the result’s metrics for grande ile LOD1.txt :

1 Area: 561545 meters

2 Total number of trees: 409

3 Number of tree which had no height: 67

4 Number of tree which had no genus: 27

5 Number of vertices: 241791

6 Number of faces: 482686

7 Time to mesh: 155.965 seconds , (2.59942 minutes)

22



3 Implementation

3.1 Config class

This class is designed to store the program’s configuration. It will be used
to store the bounding box, the level of details, the output name, the
default genus, the default height, the origin, the input building mesh,
the altitude and the merge boolean.

1 class Config {

2 private:

3 std:: string M_bbox;

4 int M_LOD;

5 std:: string M_output_name;

6 std:: string M_default_genus;

7 std:: string M_default_height;

8 std:: string M_origin;

9 std:: string M_input_building_mesh;

10 double M_altitude;

11 bool M_merge;

12

13 public:

14 Config(std:: string const &filename);

15

16 // Ommiting getters and setters

17

18 std::vector <double > bbox_coords () const;

19 };

3.2 Query function

The function perform query will be used to query the Overpass API and
save the result in a .json file. It will take the bounding box as a parameter.
The function get query result will be used to get the result of the query
using the header only library nlohmann::json.

1 void perform_query(std:: string bbox);

2 nlohmann ::json get_query_result ();
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3.3 Class tree

The Tree class will be used to store the tree’s metadata and mesh.
The function computeXY will be used to convert the latitude and longitude
to Cartesian coordinates using the WGS84toCartesian library.
The function wrap will be used to model the tree by scaling and moving the
reference mesh to the correct position in the 3D space.
The function load genus will be used to load tree genus categories from the
trees.json file.
The function createTreeFromJson will be used to create a tree object from
the .json data acquired from the Overpass API.
In order to be able to sort trees, the operator< function will be overloaded.

1 using K = CGAL:: Exact_predicates_inexact_constructions_kernel

;

2 using Point_3 = K:: Point_3;

3 using Mesh = CGAL:: Surface_mesh <Point_3 >;

4

5 class Tree {

6 private:

7 long M_id;

8 double M_lat , M_lon , M_x , M_y;

9 double M_height , M_altitude;

10 double M_circumference , M_diameter_crown;

11 std:: string M_genus , M_species , M_season;

12 std::vector <std::string > M_known_genus , M_cedrus_like ,

M_acer_like ,

13 M_liquidambar_like , M_quercus_like;

14 Mesh M_wrap;

15 std::vector <Point_3 > M_points;

16 std::vector <std::array <int , 3>> M_faces;

17

18 public:

19 // Ommiting getters and setters

20

21 void computeXY(double ref_lat , double ref_lon);

22 void wrap(int lod);

23 void load_genus(const std:: string &filename);

24 };

25

26 Tree createTreeFromJson(const nlohmann ::json &treeJson);

27 std:: ostream &operator <<(std:: ostream &os , const Tree &tree);

28 bool operator <( const Tree &lhs , const Tree &rhs);
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Each tree model has a CGAL Mesh wrapper object that will contain the
tree’s mesh and its position in the 3D space.

Scaling and moving the trees into the correct position ended being more
complex than expected.

1 // Calculate centroid of the tree

2 double centroid_x = 0, centroid_y = 0, centroid_z = 0;

3 for (const Point_3 &p : points) {

4 centroid_x += p.x();

5 centroid_y += p.y();

6 centroid_z += p.z();

7 }

8 centroid_x /= points.size();

9 centroid_y /= points.size();

10 centroid_z /= points.size();

11 Point_3 centroid(centroid_x , centroid_y , centroid_z);

12

13 // Calculate bounding box from points

14 for (const Point_3 &p : points)

15 bbox += p.bbox();

16

17 scaling_factor_double = M_height / (bbox.zmax() - bbox.zmin()

);

18

19 K::RT scaling_factor(scaling_factor_double); // Convert to

exact type

20

21 // Find the base of the tree (minimum z-coordinate)

22 double base_z = std:: numeric_limits <double >:: max();

23 for (const auto &p : points) {

24 if (p.z() < base_z)

25 base_z = p.z();

26 }

27

28 // Create affine transformations

29 CGAL:: Aff_transformation_3 <K> translate_to_base(

30 CGAL:: TRANSLATION , Vector_3(-centroid.x(), -centroid.y(),

-base_z));

31 CGAL:: Aff_transformation_3 <K> scale(CGAL::SCALING ,

scaling_factor);

32 CGAL:: Aff_transformation_3 <K> translate_back(

33 CGAL:: TRANSLATION , Vector_3(centroid.x(), centroid.y(),

base_z));

34 CGAL:: Aff_transformation_3 <K> translate_to_target(CGAL::
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TRANSLATION ,

35 Vector_3(

M_x , M_y , 0));

36

37 // Apply transformations: move to base , scale , move back ,

move to target

38 for (auto &p : points) {

39 p = translate_to_base.transform(p); // Move to base

40 p = scale.transform(p); // Scale

41 p = translate_back.transform(p); // Move back to

original position

42 p = translate_to_target.transform(p); // Move to target

position

43 }

44 // Clear existing mesh data

45 M_wrap.clear();

46

47 // Add transformed vertices to the mesh and store their

descriptors

48 std::map <Point_3 , Mesh:: Vertex_index > vertex_map;

49 for (const auto &p : points) {

50 auto v = M_wrap.add_vertex(p);

51 // Store the vertex descriptor for the transformed vertex

52 vertex_map[p] = v;

53 }

54

55 // Add faces to the mesh

56 for (const auto &face : faces) {

57 // Retrieve vertex descriptors for the face vertices

58 Mesh:: Vertex_index v0 = vertex_map[points[face [0]]];

59 Mesh:: Vertex_index v1 = vertex_map[points[face [1]]];

60 Mesh:: Vertex_index v2 = vertex_map[points[face [2]]];

61

62 // Add the face to the mesh

63 M_wrap.add_face(v0 , v1 , v2);

64 }

To ensure the placement was correct we first had to move the tree to the
origin of its bounding box, scale it to the correct height, move it back to its
original position (because scaling it was moving the tree around), and finally
move it to the correct position in the 3D space.

Note: To improve tree placement we could also compute the center of
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mass of a slice at the base of the tree and use it as its origin.

3.4 Doxygen documentation

Doxygen[28] documentation is available for the project. Doxygen is a doc-
umentation generator that produces comprehensive reference manuals from
annotated source code.

To generate the documentation, you can use the following command:

1 doxygen Doxyfile

The documentation will be available in the html directory.
You can open it with the browser of your choice, for example with Firefox:

1 firefox html/index.html
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4 Results

4.1 Model integration

Here is an example of the tree mesh union of Place de la République in
Strasbourg using generic trees and LOD1:

Figure 25: Overpass turbo query for Place de la
République in Strasbourg

Figure 26: Mesh we generated

The idea is to integrate the tree models into the terrain mesh. Here is an
example of what this integration could look like:

Figure 27: 3D model with trees at LOD 0, city center of Strasbourg
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Figure 28: 3D model with trees at LOD 0, place de la République in Strasbourg

These two images consist of two distinct meshes: the tree mesh and the
building mesh. For this particular model, we included only trees with a
specified height in the OpenStreetMap database. Trees without a specified
height do not appear in the model.

4.2 Complexity and performance analysis

To assess the complexity and performance of our program, we executed it on
the High-Performance Computing (HPC) cluster Gaya. This cluster consists
of a DELL PowerEdge R7525 head node and six DELL PowerEdge R6525
compute nodes, providing a total of 768 multi-threaded cores on the com-
pute nodes and 96 cores on the head node. Gaya offers 150 TB of storage for
data and an extremely fast 15 TB NVME scratch space. The head node is
equipped with two AMD EPYC 7552 48-Core Processors running at 2.2GHz,
totaling 192 virtual cores, and 1024 GB of RAM. Each compute node fea-
tures two AMD EPYC 7713 64-Core Processors running at 2GHz, totaling
256 virtual cores, and 512 GB of RAM. The nodes are interconnected via
Broadcom Adv. Dual 10GBASE-T Ethernet and Mellanox ConnectX-6 Dx
Dual Port 100 GbE for MPI communication.
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For our benchmarks, we used a single exclusive node with 256 cores and 512
GB of RAM.

We used four different bounding boxes Strasbourg city center as our test
area, all centered at the same point but with varying sizes:

Figure 29: 153.7 m², 12 trees Figure 30: 384.0 m², 71 trees

Figure 31: 626.1 m², 254 trees Figure 32: 808.4 m², 513 trees

For each bounding box, the program was run for the following Levels of
Detail (LODs):

• LOD 0
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• LOD 1

• LOD 2

• LOD 3

4.2.1 Area and Number of Trees

Since we’re using the area as our main feature (because it is the one we
control when meshing an area), we want to examine how the area (in m²)
relates to the number of trees available.

It is important to note that this relationship highly depends on the con-
figuration of the environment. In urban settings, trees are not usually evenly
distributed (e.g., avenues, parks, etc.), so we cannot always expect a linear
relationship between the area and the number of trees.

Since the plot is a line on a log-log scale, we can infer that the relationship
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between the number of trees and the area (in square meters) follows a power
law.

4.2.2 Impact of the level of detail (LOD)

The Level of Detail (LOD) we chose has a significant impact. Since we did
not select the LODs in a linear fashion, we aim to examine how the different
LODs are related to the number of faces produced in the meshes.

The relationship between the number of faces and the Level of Detail
(LOD) is linear. This plot clearly illustrates our choice of LODs, with the
last one being significantly more detailed.
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4.2.3 Execution time

Finally, we aim to benchmark the time it takes to mesh the area for each
Level of Detail (LOD).

Figure 33: Execution time, union of meshes

This relationship appears to be quadratic. To confirm this with greater
precision, we would need more data.
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Figure 34: Execution time, union of triangle soup

We can see that making the union using triangle soup instead drastically
reduces the execution time to a linear relationship.
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5 Prospects

5.1 Account for seasonal changes and leaf fall

One of the developments of our project is to account for seasonal changes and
leaf fall. Depending on the season, solar rays will penetrate foliage to varying
degrees. To simulate this, we can group leaves into clusters of 5-10 and label
them, allowing us to add or remove these clusters in the configuration file
based on the season. To simplify, we can categorize the seasons into two
groups: more leaves for spring and summer, and fewer leaves for fall and
winter.

5.2 Shading calculations

One other development is to simulating light and shade on 3D objects, such as
buildings, using the Feel++[29] library, which specializes in solving Partial
Differential Equations (PDEs). This could help simulate ray tracing and
shading effects on buildings.
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6 Conclusion

The ExaMA WP1 - Vegetation project represents a significant stride towards
enhancing urban modeling through the integration of vegetation, specifically
trees, into 3D models of urban environments. By focusing on the Urban

Building Model (UBM) use case within the HiDALGO2 initiative, we aimed
to improve the accuracy and realism of thermal and energy simulations, con-
tributing to better building energy efficiency and indoor air quality.

Through our efforts, we successfully extracted tree data from OpenStreetMap

and utilized the CGAL library to generate 3D tree models. We integrated these
models into existing terrain meshes, specifically focusing on the Strasbourg
city center. Our methodology, involving data acquisition via the Overpass

API, tree model generation using Alpha Wrapping, and precise coordinate
conversion through Mercator projection, ensured a robust and scalable
approach to urban vegetation modeling.

The use of different Levels of Detail (LOD) allowed for flexible and effi-
cient modeling, catering to various computational and visual requirements.
Our benchmarking on the HPC cluster Gaya confirmed the scalability and
performance of our approach, highlighting the quadratic relationship between
execution time and the number of trees when using union of meshes and a
linear relationship when using triangle soup.

Additionally, we addressed the challenge of missing data by implement-
ing a system to assign default values for tree height and genus, ensuring
comprehensive coverage even in the absence of complete metadata. Our cat-
egorization of tree genera and the creation of a library of tree models further
enhanced the versatility and applicability of our solution.

Overall, the ExaMA WP1 - Vegetation project has laid a strong foun-
dation for future urban modeling endeavors, emphasizing the importance
of integrating natural elements into urban simulations. The project’s out-
comes not only contribute to the specific goals of the HiDALGO2 initiative
but also provide valuable insights and tools for broader applications in ur-
ban planning, environmental science, and computational geometry. As we
move forward, the incorporation of seasonal changes, leaf fall, and advanced
shading calculations will further refine and expand the capabilities of our
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modeling approach, paving the way for more sustainable and livable urban
environments.
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