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1 Introduction

In many practical applications across engineering and the physical sciences,
one frequently encouters partial differential equations (PDEs) describ-
ing the evolution of a physical quantity in space and time. Among these,
the advection-diffusion (or convection-diffusion) equation is ubiquitous
for modeling the transport of a scalar field, such as the concentration of
a pollutant in air or water, or heat in a conductive medium. Althouigh an-
alytical solutions exist for special cases—like Gaussian initial conditions in
one spatial dimension—realistic settings often require numerical simulations
with potentially large grids. Such high-dimensional simulations can become
computationally expensive, especially when one needs to explore multiple pa-
rameter variations (e.g., different initial conditions or physical coefficients).

To alleviate the computational burden, reduced-order modelling has
emerged as a potent technique. Reduced-order models (ROMs) aim to cap-
ture the essential dynamics of a PDE in a significantly lower-dimensional
space. Traditional ROM techniques often rely on linear transformations such
as Proper Orthoganl Decomposition (POD). However, neural networks have
introduced new ways to nonlinearly reduced dimensionality. In particular,
autoencoders—a class of neural networks designed for unsupervised rep-
resentation learning—have shown promise in compressing high-fidelity PDE
solutions into compact latent spaces [1].

A persistent challenge remains: while neural networks can approximate
complex, high-dimensional dynamics with impressive accuracy, they often
lack interpretability. The network’s ”decoder” from the latent space back
to physical space is usally a black-box feedforward function. This hinders
the ability to gain analytical insights or to incorporate domain knowledge
explicitly.

Symbolic regression—and, in particular, the family related to Sparse
Identification of Nonlinear Dynamics (SINDy)—offers a solution: dis-
cover a symbolic or closed-form expression that maps the learned latent vari-
ables back into physical variables. By doing so, one aims to replace (or aug-
ment) the network’s black-box decoding with a simplified and interpretable
formula that captures the underlying PDE structure.
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1.1 Project overview

In this project, we consider a 1D advection-diffusion PDE with a Gaussian
initial condition. We solve it numerically across different initial means (µ0)
and standard deviations (σ0). We then train:

1. A convolutional autoencoder to compress the PDE snapshots into
a low-dimensional latent representation (in our case, R2).

2. A symbolic decoder (based on SINDy-like ideas) that attempts to
learn an explicit formula linking latent variables back to the PDE state
u(x).

This report presents the mathematical background of the PDE, the method-
ology for data Generation and neural network training, the symbolic regres-
sion approach, anbd key results. The hope is taht such ”hybrid” approach-
combining the efficiency and expressivity of deep learning with the inter-
pretability of symbolic regression-provides a robust framework for data-driven
PDE modeling.

1.2 Project Roadmap

We created a roadmap on to ensure we meet the deadlines for the deliverables.
The deadlines and descriptions for each milestone are as follows:

1. V0 - 21th November 2024

• Presentation for V0: project overview and initial plans.

• Initial Report: Detailed mathematical formulations and initial nu-
merical methods.

• Codebase: Initial numerical solver implemented and tested.

2. V1 - 10th January 2025

• Trained Neural Network Models
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• Updated Project Report

• Presentation for V1

3. V2 - 27th February 2025

• Final Reduced-Order Model with Analytical Decompression

• Comprehensive Project Report

• Final Presentation for V2

Detailed roadmaps for each milestone are provided below.

1.2.1 V0 - 21st November 2024

• Define Project Context and Objectives.

• Initial Project Setup.

• Plan Project Roadmap.

• Theoretical Analysis & Mathematical Formulation.

• Initial Numerical Implementation.

• Initial Data Description.

• V0 Report & Presentation.

• LaTeX workflow.

• Gather Feedback.

1.2.2 V1 - 10th January 2025

• Methodology, Objectives, Roadmap update.

• Comprehensive Data Generation.

• Familiarizing with NN for ROM.
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• Data Preprocessing.

• NN Desing and Training.

• First Results Analysis.

• Initial Validation & Analysis.

• V1 Report.

• Gather Feedback.

1.2.3 V2 - 27th February 2025

• Symbolic Regression for Analytical Decompression.

• Integration into Reduced Model.

• Comprehensive Validation and Analysis.

• Project Retrospective.

• Set up CI/CD and Docker Image.

• V0 Report & Presentation.

• Prepare for Defense.

• Create GitHub Discussion.

• Gather Feedback.

2 Background

2.1 Advection-Diffusion and Its Importance

The advection-diffusion equation is a cornerstone of transport phenom-
ena in fluid mechanics, heat transfer, and other disciplines [2].
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For a scalar field u(x, t)-representing, for instance, the concentration of
a chemical species-the 1D advection-diffusion PDE can be written in non-
conservative form as:

∂u

∂t
+ a

∂u

∂x
−D

∂2u

∂x2
= 0, (1)

where a is the advection speed and D is the diffusion coefficient. Despite
appearing simple, this PDE can be challenginf to solve numerically in high-
dimensional setting because stability constraints typically require small time
stemps and relatively fine grids.

Moreover, in inverse inverse modeling or parameter estimation tasks,
one often wants repeated PDE solves for various values of (µ0, σ0) or other
physical parameters. This repeated solving can be computationally pro-
hibitive, thus motivating low-dimensional surrogate or reduced-order models.

2.2 Neural Network Surrogates and Autoencoders

A promising avenue for constructing surrogates lies in deep learning. In-
stead of explicitly deriving reduced bases through linear techniques like POD,
we can use an autoencoder-a neural network architecture designed for un-
supervised feature learning and dimensionality reduction.

What is an Autoencoder? An autoencoder typically consists of two main
parts:

1. Encoder: Takes the high-dimensional input (e.g, a PDE snapshot
u(x)) and maps it into a low-dimensional latent vector z. Convolutional
layers are especially useful for spatially structured data like images or
1D fields.

2. Decoder: Takes the latent vector z and attempts to reconstruct the
original high-dimensional data.
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Figure 1: Autoencoder convolutional neural network (CNN) structure. [3]

The autoencoder is trained by minimizing a reconstruction loss (often
the mean squared error) between the network’s output and the original data.
Through training, it learns to encode the essential features of the snapshots in
a compressed form (the latent space) [1]. One can then view z as the reduced
coordinates that capture the dominant variability of the PDE solutions.

We decided to use a convolutional architecture because convolutional lay-
ers exploit local spatial correlations, significantly reducing the number of pa-
rameters and making the network more efficient for grid-based PDE data.
Our project uses Conv1d and ConvTranspose1d layers to handle the 1D
solution array u(x).

The main difference between a Conv layer (standard convolution) and a
ConvTranspose layer (often called ”deconvolution” or ”transposed convo-
lution”) is how they handle the spatial dimension (the output size relative
to the input):

• Conv (standard convolution):

– Performs a local filtering/aggregation operation on the input data.

– Tends to reduce the spatial resolution (or maintain it, depending
on the configuration) through the use of strides and padding.

– Commonly used in the ”encoding” phases to extract features.

• ConvTranspose (transposed convolution or ”deconvolution”):

– Allows for increasing (or reconstructing) the spatial resolution.
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– Conceptually reverses the convolution operation (even though math-
ematically it is not always a simple inversion).

– Used in the ”decoding” or reconstruction phases, for example in
an autoencoder to return to the original spatial dimension after
compression.

In summary, Conv1d/2d/3d layers are frequently found in the en-
coder part of the network (where information is to be compressed) and
ConvTranspose1d/2d/3d layers in the decoder part (where the original
resolution is to be restored).

2.3 Symbolic Regression and SINDy

Symbolic regression aims to find analytical expressions that best fit a given
dataset, typically with constraints or objectives that prioritize simplicity or
interpretability. A well-known approach in this domain is Sparse Inden-
tification of Nonlinear Dynamics (SINDy), which was introduced to
discover equations of dynamical systems directly from time-series data [4].

The essential steps of SINDy-like methods include:

1. Library Construction: Create a library of candidate functions θ1(z), θ2(z), . . .
of the latent variables z. These candidate functions might include poly-
nomials, trigonometric functions, exponentials, and products.

2. Sparse Regression: Use a regression technique with L1-type regu-
larization to enforce many coefficients to zero, thereby discovering a
sparse combination of candidate functions that reconstruct the data.

3. Thresholding: After the regression step, small coefficients are pruned
to zero to enforce further sparsity, effectively yielding a human-readable
symbolic expression.

In this project, the ”symbolic decoder” attemps to learn a directr mapping
z → u(x). Of course, u still depends on spatial coordinate x. However, if we
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gather multiple snapshots of PDE solutions for different parameters, each
snapshot is associated with a 2D latent vector (z1, z2). The symbolic decoder
tries to find an expression of the form:

ˆ(u)(x) =
m∑
k=1

αkθk(z1, z2),

where αk are learned coefficients and θk are candidates basis functions.
BEcause we aim for a function of z1 and z2 only, the approach affectively
”collapses” the PDE solution into the latent space representation discovered
by the autoencoder, then reconstructs it in an interpretable symbolic form.

3 Mathematical Formulation

3.1 Advection-Diffusion Equation

3.1.1 Conservative Form

∂u

∂t
= ∇ · (D∇u− au) , (2)

Equation (2) represents the conservative form of the advection-diffusion
equation.

3.1.2 Non-Conservative Form

Assuming constant coefficients and a one-dimensional spatial domain, we can
expand the divergence operator to obtain the non-conservative form:

∂u

∂t
+ a

∂u

∂x
−D

∂2u

∂x2
= 0, (3)
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where

• ∂u
∂t

is the time derivative of u,

• a∂u
∂x

represents the advection term,

• D ∂2u
∂x2 represents the diffusion term.

3.2 Initial Condition

We use a Gaussian initial condition, which is widely used in problems in-
volving diffusion and advection-diffusion equations due to its mathematical
simplicity and its ability to model smooth, localized distributions [5]:

u(x, 0) =
1

σ0

√
2π

exp

(
−(x− µ0)

2

2σ2
0

)
, (4)

where

• µ0 is the initial mean,

• σ2
0 is the initial variance.

4 Methodology

4.1 Analytical Solution

We assume that the solution remains Gaussian over time, which is supported
by the mathematical properties of the advection-diffusion equation under
certain conditions [5]:

u(x, t) =
1

σ(t)
√
2π

exp

(
−(x− µ(t))2

2σ2(t)

)
. (5)
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4.1.1 Derivation of Time Evolution

We compute the derivatives and substitute into Equation (3):

Time derivative:

∂u

∂t
=

∂u

∂µ

dµ

dt
+

∂u

∂σ2

dσ2

dt

Where:

∂u

∂µ
= u

(
−(x− µ)

σ2

)

∂u

∂σ2
= u

(
(x− µ)2 − σ2

2σ4

)
Thus we have:

∂u

∂t
= u

[
−(x− µ)

σ2

dµ

dt
+

(x− µ)2 − σ2

2σ4

dσ2

dt

]
Spatial derivatives:

First derivative:

∂u

∂x
= u

(
−(x− µ)

σ2

)
Second derivative:

∂2u

∂x2
= u

(
(x− µ)2 − σ2

σ4

)
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Substitute into the Non-Conservative Form:

∂u

∂t
+ a

∂u

∂x
−D

∂2u

∂x2
= 0,

u

[
−(x− µ)

σ2

dµ

dt
+

(x− µ)2 − σ2

2σ4

dσ2

dt

]
+a·u

(
−(x− µ)

σ2

)
−D·u

(
(x− µ)2 − σ2

σ4

)
= 0

u

[
−(x− µ)

σ2

dµ

dt
+

(x− µ)2 − σ2

2σ4

dσ2

dt

]
+a·u

(
−(x− µ)

σ2

)
= D·u

(
(x− µ)2 − σ2

σ4

)

Simplify:

[
−(x− µ)

σ2

dµ

dt

]
+

[
(x− µ)2 − σ2

2σ4

dσ2

dt

]
+a

(
−(x− µ)

σ2

)
= D

(
(x− µ)2 − σ2

σ4

)

4.1.2 Resulting ODEs

After substituing and equating coefficients, we obtain the following two or-
dinary differential equations (ODEs):

dµ

dt
= a, (6)

dσ2

dt
= 2D. (7)

Interpretation:

The complex PDE (3) can be reduced to two simpler ODEs under the
assumption of Gaussian preservation.
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• The mean µ(t) evolves linearly with time, with a rate of change equal
to the advection velocity a,

• The variance σ2(t) evolves linearly with time, with a rate of change
equal to twice the diffusion coefficient D.

4.2 Numerical Methods

4.2.1 Spatial Discretization

We discretize the spatial domain into N+1 grid points with uniform spacing
∆x, such that xi = x0 + i∆x for i = 0, 1, . . . , N .

Advection Term For the advection term a∂u
∂x
, we will use the upwind

scheme. The upwind scheme is appropriate for positive advection-dominated
problems as it accounts for the direction of the flow and provides numerical
stability.

Since the advection velocity a is positive, we use the backward difference
approximation:

(
∂u

∂x

)
i

≈ ui − ui−1

∆x
, for a > 0.

If a were negative, we would use the forward difference:

(
∂u

∂x

)
i

≈ ui+1 − ui

∆x
, for a < 0.

Diffusion Term For the diffusion term D ∂2u
∂x2 , we will use the three-point

centered scheme for the second derivative. This scheme is second-order
accurate and symmetric, providing a good balance between accuracy and
computational efficiency.
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The three-point centered scheme approximates the second derivative as
follows:

(
∂2u

∂x2

)
i

≈ ui+1 − 2ui + ui−1

∆x2
.

4.2.2 Temporal Discretization

For the temporal derivative ∂u
∂t
, we will use the explicit Euler method, a

first-order-time stepping scheme. This method is straightfoward to imple-
ment and suitable for problems where high temporal accuracy is not critical.

The explicit Euler approximation is:

(
du

dt

)n

i

≈ un+1 − un

∆t
,

where:

• un
i is the numerical approximation of u at grid point i and time level

n,

• ∆t is the time step size,

• n is the time level, and n+ 1 is the next time level.

4.3 Discrete Equation

Combining the spatial and temporal discretizations, we derive the fully dis-
crete form of the advection-diffusion equation.

Starting from the non-conservational form:
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∂u

∂t
+ a

∂u

∂x
−D

∂2u

∂x2
= 0,

we approximate each term as follows:

Time Derivative: (
∂u

∂t

)n

i

≈ un+1
i − un

i

∆t
.

Advection Term: (
a
∂u

∂x

)n

i

≈ a · ui − ui−1

∆x
.

Diffusion Term: (
D
∂2u

∂x2

)n

i

≈ D · ui+1 − 2ui + ui−1

∆x2
.

Substituing these approximations into the PDE, we obtain:

un+1
i − un

i

∆t
+ a · ui − ui−1

∆x
−D · ui+1 − 2ui + ui−1

∆x2
= 0.

Rearranging the equation to solve for un+1
i , we get:

un+1
i = un

i −∆t

[
a ·

un
i − un

i−1

∆x
−D ·

un
i+1 − 2un

i + un
i−1

∆x2

]
.

4.3.1 Implementation Details

Boundary Conditions
The boundary conditions enforce that the solution u is zero at the ends of

17



the spatial domain, that is, at x = 0 and x = L. These Dirichlet conditions
ensure that the concentration remains zero at the boundaries throughout
the simulation. They are implemented in the advection diffusion step
function in the solver.py file as follows:

# Dirichlet BCs

u_new[0] = 0.0

u_new[-1] = 0.0

This approach ensures that the values of u at the boundary points are
maintained at zero at each time step.

Stability Considerations The explicit Euler method combined with ex-
plicit spatial discretization schemes imposes stability constraints on the time
step ∆t.

Diffusion Stability Condition:

The diffusion term requires:

∆t ≤ ∆x2

2D
.

Advection Stability Condition (CFL Condition):

The Courant-Friedrichs-Lewy (CFL) condition for the advection term is:

∆t ≤ ∆x

a
.

To ensure numerical stability for both terms, we choose the smallest time
step that satisfies both conditions:

∆t ≤ min

(
∆x2

2D
,
∆x

a

)
.
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4.3.2 Theoretical and Numerical PDE Setup:

The initial step involves constructing a finite difference scheme to solve the
PDE, as the reduced model will weed numerical solutions for training.

The advection term will use an upwind-centered scheme (appropri-
ate given a positive velocity a).

The diffusion term will use a three-point centered scheme, with an
explicit Euler method for time integration.

4.4 Generating Training Data

We vary initial condition parameters µ0 and σ0. For each par (µ0, σ0):

1. We initialize u(x, 0) as Gaussian with mean µ0 and s standard deviation
σ0.

2. We step through time until T , saving snapshots at specific intervals.

The result is a dictionary-like dataset. This provides a variety of PDE
solutions to train both the autoencoder and the symbolic decoder.

4.5 Convolutional Autoencoder

We organize our PDE solutions into a PyTorch TensorDataset. Each sam-
ple is a 1D array of lenght Nx, reshaped as 1, NX for a Conv1d-based
autoencoder. The autoencoder architecture typically looks like:

• Encoder:

– A sequence of 1D convolutions with strides that reduce the spatial
dimension step by step.
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– Eventually flattens to a latent dimension of size 2.

• Decoder:

– A sequence of transposed (fractionally strided) 1D convolutions
that invert the process of the encoder, reconstructing a (1, Nx)
field.

We train this model using mean squared error (MSE) loss between the
reconstructed and original PDE snapshots, using an optimizer like Adam.
After training, the encoder effectively learns to compress PDE snapshots
into a 2D latent representation.

4.6 Symbolic Decoder (SINDy-Like)

Once we have a trained autoencoder, we do the following:

1. Encode all the PDe snapshots in our dataset to obtain latent vectors
(z1, z2).

2. Define a symbolic decoder as a linear combination of candidate
functions in (z1, z2):

û(xi) = Θ · α,
where Θ(z) is a vector of basis functions (e.g, polynomials, sines, cosines,
exponentials) and α are trainable coefficients.

3. Add an L1 penalty to the loss so that many coefficients get driven
to zero, encouraging a sparse solution.

4. Train this symbolic decoder to minimize the MSE between û(x) and
the original PDE snapshots, plus the regularization term.

5. Apply thresholding to prune coefficients below some small value.

The final result is a set of expressions that map from the latent space
(z1, z2) to each spatial coordinate u(xi). Although we still treat each xi as
an independent output, the discovered expressions may reveail interpretable
relationships tied to (z1, z2).
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5 Implementation Details

5.1 GitHub Repository

The source code, numerical implementations, and other project resources are
available on GitHub:

github.com/master-csmi/2024-m2-project-symbolic-regression

The repository contains Python scripts for numerical simulations, neural
network training, and symbolic methods, along with examples and documen-
tation.

5.2 Software and Libraries

• Python 3.10+

• NumPy for numerical operations

• Matplotlib for visualization

• PyTorch for deep learning modules

• PyTest for unit testing
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5.3 Project Structure

ProjectRoot

src

pde

initial conditions.py

solver.py

data

generation.py

preprocessing.py

models

autoencoder.py

symbolic decoder.py

training

autoencoder trainer.py

symbolic decoder trainer.py

visualization plots.py

init .py

main.py

README.adoc

Dockerfile

5.4 Computational Domain and Parameters

A typical setup might be:

• Spatial domain: [0, 1] discretized into Nx = 96 points

• Time domain: t ∈ [0, 0.3] with ∆t chosen to meet the CFL constraints.

• Advection speed: a = 1.0

• Diffusion coefficient: D = 0.1
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For a variety of u0 ∈ 0.3, 0.5, 0.7 and σ0 ∈ 0.05, 0.1, 0.15, we generate
PDE solutions. The final dataset might contain several thousand snapshots,
enough to train and validate the models.

5.5 Implementation

Below are the main functions:

1 def generate_advection_diffusion_data(mu0_list , sigma0_list ,

a, D, x, dx , dt , Nt , time_stride):

2

3 solutions = {}

4

5 for mu0 in mu0_list:

6 for sigma0 in sigma0_list:

7 # Initial condition

8 u = gaussian_initial_condition(x, mu0 , sigma0)

9

10 snapshots = []

11

12 # Store initial snapshot at t=0

13 snapshots.append(u.copy())

14

15 # Time stepping

16 for n in range(1, Nt):

17 u = advection_diffusion_step(u, a, D, dx, dt)

18

19 if n % time_stride == 0 or n == Nt - 1:

20 snapshots.append(u.copy())

21

22 u_stored = np.array(snapshots)

23

24 key = f"mu0_{mu0}_sigma0_{sigma0}"

25 solutions[key] = u_stored

26

27 return solutions

Listing 1: Function to solve the advection-diffusion PDE for multiple (µ0, σ0)
generation.py
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1 class ConvAutoencoder(nn.Module):

2 def __init__(self , input_dim =100, latent_dim =2):

3 super().__init__ ()

4 # Encoder

5 self.encoder = nn.Sequential(

6 nn.Conv1d(1, 32, kernel_size =5, stride=2, padding

=2),

7 nn.ELU(),

8 nn.Conv1d (32, 64, kernel_size =5, stride=2,

padding =2),

9 nn.ELU(),

10 nn.Conv1d (64, 128, kernel_size =5, stride=2,

padding =2),

11 nn.ELU(),

12 nn.Flatten (),

13 nn.Linear (128*( input_dim //8), 128),

14 nn.ELU(),

15 nn.Linear (128, latent_dim),

16 )

17 # Decoder

18 self.decoder = nn.Sequential(

19 nn.Linear(latent_dim , 128),

20 nn.ELU(),

21 nn.Linear (128, 128*( input_dim //8)),

22 nn.ELU(),

23 nn.Unflatten(1, (128, input_dim //8)),

24 nn.ConvTranspose1d (128, 64, kernel_size =5, stride

=2,

25 padding=2, output_padding =1),

26 nn.ELU(),

27 nn.ConvTranspose1d (64, 32, kernel_size =5, stride

=2,

28 padding=2, output_padding =1),

29 nn.ELU(),

30 nn.ConvTranspose1d (32, 1, kernel_size =5, stride

=2,

31 padding=2, output_padding =1),

32 )

33

34 def forward(self , x):

35 z = self.encoder(x)

36 x_recon = self.decoder(z)

37 return x_recon

Listing 2: Convolutionsl Autoencoder class deifnition autoencoder.py
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1 class SymbolicDecoder(nn.Module):

2 def __init__(self , latent_dim =2, output_dim =96,

library_size =16):

3 super(SymbolicDecoder , self).__init__ ()

4

5 self.latent_dim = latent_dim

6 self.output_dim = output_dim

7 self.library_size = library_size

8

9 self.coefficients = nn.Parameter(torch.randn(

output_dim , library_size) * 0.01)

10

11 self.nonlinear_params = nn.Parameter(torch.randn(

library_size) * 0.1)

12

13 self.library_functions = [

14 lambda z: torch.ones_like(z[:, 0]),

15 lambda z: z[:, 0],

16 lambda z: z[:, 1],

17 lambda z: z[:, 0] ** 2,

18 lambda z: z[:, 1] ** 2,

19 lambda z: torch.sin(self.nonlinear_params [0] * z

[:, 0]),

20 lambda z: torch.cos(self.nonlinear_params [1] * z

[:, 1]),

21 lambda z: z[:, 0] * z[:, 1],

22 lambda z: z[:, 0] ** 3,

23 lambda z: z[:, 1] ** 3,

24 lambda z: torch.exp(self.nonlinear_params [2] * z

[:, 0]),

25 lambda z: torch.exp(self.nonlinear_params [3] * z

[:, 1]),

26 ]

27

28 while len(self.library_functions) < self.library_size

:

29 self.library_functions.append(lambda z: torch.

zeros(z.size (0), device=z.device))

30

31 def forward(self , z):

32

33 library_matrix = []

34 for func in self.library_functions [:self.library_size ]:

35 library_matrix.append(func(z))

36
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37 Theta = torch.stack(library_matrix , dim=1)

38

39 x_recon = Theta @ self.coefficients.t()

40 return x_recon

Listing 3: Symbolic Decoder class deifnition autoencoder.py
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6 Results

6.1 Autoencoder Performance

We trained the convolutional autoencoder for around 100 epochs using the
Adam optimizer with a learning rate of 1e− 3. The final reconstruction loss
on the traininf set typically droped below 1e− 3.

Figure 2: Training loss evolution of the autoencoder over epochs. [6]

When visually comparing original vs. reconstructed PDE snapshots at
different times, the reconstructions are almost indistinguishable from the
ground truth.
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Figure 3: Autoencoder’s reconstruction of PDE snapshots at different times. [7]

Figure 4: Autoencoder’s reconstruction of PDE snapshots at different times. [8]

Figure 5: Autoencoder’s reconstruction of PDE snapshots at different times. [9]

6.2 Symbolic Decoder and SINDy-Like Expressions

Next, we trained the symbolic decoder by defining a library of candidate
functions (polynomials, sines, cosines, exponentials of z1 z2) and applying an
L1 penalty. Over many epochs (e.g, 10,000), a large graction of the learned
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coefficients were driven to zero. The final printed expressions for each out-
put index i ∈ [1, Nx] show that, while some terms remain (often polynomials
and trigonometric functions), many are removed. Although these discov-
ered expressions can look dense, they are more interpretable than an opaque
neural network. In a perfect scenario, if the PDE solutions were strictly
parametrized by µ and σ, we might see simpler polynomials or exponentials.
However, the method still approximates well even in a purely data-driven
context.

6.2.1 Training Loss

Once the autoencoder was trained, we froze the encoder and collected latent
vectors for each PDE snapshot. We then trained the symbolic decoder with
an L1 penalty.

Figure 6: Training loss evolution for the symbolic decoder, including both MSE and L1 penalty. [10]
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6.2.2 SINDy Reconstructions

To visualize the performance of the symbolic decoder, we compare the ground
truth PDE snapshots with the symbolic decoder’s reconstruction in Figures 7,
8 and 9.

Figure 7: Ground truth (blue) vs. SINDy reconstruction (red). [11]

Figure 8: Ground truth (blue) vs. SINDy reconstruction (red). [12]
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Figure 9: Ground truth (blue) vs. SINDy reconstruction (red). [13]
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7 Prospects

Several avenues remain open for further investigation:

1. Higher-dimensional PDEs: Extending to 2D or 3D would require
convolutional autoencoders with Conv2d or Conv3d, but the pipeline
remains similar.

2. Library Engineering: Carefully choosing or learning the candidate
function library can improve the final symbolic expressions. One could
include known basis functions for advection-diffusion or focus on sim-
pler polynomials.

3. Combining PDE Knowledge: Hybrid approaches can embed partial
PDE knowledge into the autoencoder or the symbolic regression step,
potentially yielding more physically grounded expressions.

4. Real-time Control: If real-time or multi-query scenarios demand
rapid PDE evaluation, these reduced-order models could provide near-
instantaneous predictions once trained.
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8 Conclusion

In this project, we combined convolutional autoencoders and symbolic re-
gression (SINDy-like methods) to build a reduced-order model for the 1D
advection-diffusion equation with Gaussian initial conditions. The autoen-
coder effectively compresses each PDE snapshot into two latent dimensions,
capturing the essential “mean” and “variance” dynamics. The symbolic de-
coder then attempts to reconstruct the PDE fields from these latent variables
using a sparse combination of candidate functions. The results are promising
in terms of both accuracy and partial interpretability.

This methodology illustrates a data-driven approach for discovering sim-
pler models of complex PDEs. It can be extended to multi-dimensional
problems, other PDEs, or real-time parameter exploration. Further work
could refine the symbolic regression library and examine the generalization
properties of such hybrid networks under more challenging PDE settings.
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